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The problem of optimal stabilization is solved for controlled linear systems 
with white noise. The optimal solution is obtained by the method of success- 

ive approximations each of which represents the optimal solution of the rela- 
ted determinate problem. Necessary and sufficient conditions of stabilizabil- 

ity are given, 

1. Formulation and tranrformatfon of the problem. Consider asto- 
chastic controlled system of the form k 

+=(A +&r++(b+&+ (1.1) 
I-=1 ?.=I 

Here 5 is an n-dimensional phase coordinate vector, u is the scalar control, A and 0;. 
are constant ( It X n )- matrices, b and qr are constant n-vectors, E,’ (t) (r = 1, . , ., 
k) denote the noise present in the object and q’r (t) (r = 1, . . ., m) is the noisepre- 

sent in the control charmeL In addition, all g,. (t) and qr (t) are standard Wiener pro- 
cesses independent within the set. 

Let us consider a problem of optimal stabilization [l - 51 of the system (1.1) with the 
quality criterion 

I(u) = MT [s*Gz + hfP] at, A>0 (1.2) 

where G is a positive definite ( n i n )-matrix (G > 0). 
If the Bellman function associated with the problem (1. l), (1.2) is sought as a positive 

definite quadratic form x*Mx, the matrix M > 0 satisfies the equation 

A*M + MA + k o,*Mo, - A;;;j = - G (1.3) 

+=1 

Cp (M) = jl ‘~r*Mq+. 

and the optimal control is given by the formula 

ua (5) = - b*Mxl(h + cp (Ml) 

Following [3, 41, we perform the following change of variables in (1.3) : 

D = Ml@ + IP (W) 
This yields the system 

(1.4) 

(1.5) 
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A*D + DA + 5 oT*Dcr - Dhb*D = - pJhG 
?.=I 

I--cp(D)=~ 
(1.6) 

Theorem 1. For the control 

us (x) = - b*Dx (1.7) 
to be optimal in the problem (1. l), (1.2) it is necessary and sufficient that system( 1.6) 
has a solution D > 0, p > 0. such solution of (1.6) is unique. 

Proof. Necessity. The existence of a solution of the optimal problem (1.1)) 
(1.2) implies the existence of the solution 111 > 0 of (1.3), and the validity of the for- 

mula (1.4) for the optimal control uO. From (1.5) we find 

(1.8) 

and the necessity follows at once from (1.5) and (1.6). 
Sufficiency. Let D > 0, p > 0 be a solution of the system (1.6). Then 

cp (D) < 1. Assuming (see (1.5) and (1.8) ) 

M = AD/(1 - cp (D)).> 0 

we find, that ikf satisfies (1.3) and 

ua (2) = - b*Dz = - b*Mzl(3L + rp (M)) 

which implies that the control (1.7) is optimal. 

The uniqueness of the solution D > 0, p > 0 of (1.6) follows from the optimality 
of (1. ‘7) just shown, and this completes the proof of Theorem 1. 

2. Nccc8tory and rufficient condition8 of ctobilizabllity. The 
necessary condition for the system (1.1) with noise in the control channel to be stabili- 
zable is, that the corresponding system without noise in the control channel: cpr = 0 

(r = 1, . . ., m) is also stabilizable. At the same time, the stabilizability is equiva- 
lent to the existence of a solution of the optimal problem (1. l), (1.2) for any positive 

definite matrix G. It follows therefore from Theorem 1 that for the stabilizability of 

the system (1.1) with q+. = 0 (r = 1, . , . , m) , it is necessary and sufficient that 
for any y > 0 there exists a unique solution D > 0 of the equation 

A”D f DA - Dbb”D = - vG - i q.*Dd, 
T=l (2.1) 

Theorem 2. The necessary and sufficient condition of stabilizability in the mean 
square of system (1.1) is the existence of v > 0 such that the inequality 9 (D) < 1 
is satisfied for the solution D > 0 of system (2.1). 

Proof. The necessity follows at once from the existence of the solution D > 0, 
p > 0 of the system (1.6) for any G, provided that the system (1.1) is stabilizable. 

Sufficiency. Let D > 0 be a solution of (2. l), and cp (D)< 1. We set IJ = 
1 - cp (D) > 0. Then the system (1.6) with I. = P/V has a solution D > 0, p > 
0, and consequently the system (1.1) is stabilizable. The stabilizing control can be 
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found from (1.7). This completes the proof of Theorem 2. 
We shall show a simple sufficient condition of stabilizability of the system (1.1) with- 

out noise in the control channel, i.e. with qr = 0 (r = 1, , . ,, m). This condition 

will also be a sufficient condition of existence of the solution D > 0 of the system 

(2.1) for any y > 0. 
Theorem 3. If the determinate system 

dxldt = Ax + bu (2.2) 
is fully controllable, system (1.1) with (pr = 0 (r = 1, . . ., m) is stabilizable in the 

mean square irrespective of any noise in the object. 

Without carrying out a detailed proof, we note that by virtue of the complete control- 

lability of system (2,2) its spectrum can be shifted as far to the left as required by choos- 
ing an appropriate control. Therefore a stabilizing control can always be selected irre- 

spective of the a p r i o ri specified noise in the object. 

3. Limiting form of the necer:rry and rufficient condltfon, of 
stsbflizrbllfty. We shall assume that the system (1.1) with qPr = 0 (r = 1, . . . , 
m), i.e. without noise in the control channel, is stabilizable. Then, as we said in Sect. 

2, Eq. (2.1) has a solution D, > 0 for any y > 0. It can be shown that D, decrea- 

ses monotonously as 2: + 0. i.e. D,, - D,, ) () for v2 > VI. Therefore the fol- 
lowing limit exists : 

D, = lim.,l,D,, D, > 0 
i.e. the matrix D ,, is nonnegative definite. 

Theorem 4. The fulfillment of the inequality cp (Do)< 1 is a necessary and 

sufficient condition of stabilizability in the mean square of systeni (1. 1). 

The proof follows from Theorem 2 and the fact that the function cp (0”) increases 
monotonously in Y. 

From Theorem 4 we can obtain results concerning the stabilizability for the case dis- 

cussed in [3, 41. Indeed, we have this case when 

jr or*Do., = cp (D) Q (3. I) 

where Q is a nonnegative definite matrix. Let us consider the equation 

A*D + DA - Dbb*D = - vG - Q, v>o (3.2) 

bet Dy > 0 be a solution of this equation (we naturally assume that the determinate 
system (2.2) is stabilizable). 

As before, we have the limit 

D, = limMl, D,, B, > 0 

Theorem 5. Let the noise in system (1.1) be such that (3.1) is satisfied. Then 

the necessary and sufficient condition for system (1.1) to be stabilizable in the mean 

square is that r+ (a,) < 1. 
Proof. Necessity. Stabilizability in the mean square of system (1.1) implies, 

by virtue of Theorem 4, that cp (D,) < 1. Since the function cp (Dy) is monotonous 
in y , we can find y = Y,, such that cp (D,,) - 1. Recalling that D, is a solution of 
(2.1) and a, is a solution of (3.2), we find that D,, = B,,. Using now the fact that 

the function cp (D,) is monotonous, we obtain cp (Da) < 1. 
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The sufficiency can be proved by repeating the above arguments in the reverse order. 

This completes the proof of Theorem 5, 

When v = 0 s Eq. 13% generally speaking, has several nonnegative definite solutions 
and D,, is the largest of them. If however Q > 0, then .f3, coincides with the unique 
positive definite solution of (3.2) with v = 0. 

It is clear that this solution is optimal for the corresponding determinate problem, We 

note that in [3, 41 the necessary and sufficient conditions of stabi~zability are obtained 
in the form resembling one obtained here, but only for the case Q > 0. 

4, Method of rucccraive approxlmation8, We shall assume that the de- 
terminate system (2.2) is stabilizable. Then a matrix Do) > 0 can be found satis~ing 
the equation 

A*D(o) + D(*)A - ~(“;[>b*l)O = - vG, Y> o i4.1) 

The subsequent approximations D(s) > 0 (s = 1, 2, . . .) will be found from the 

following recurrent relations : 
k‘ 

A$@“’ + @“‘A _ D’“‘bb’D’“’ _-_ _ ,&! _ 2 q”@S-l)q (4.2) 

Obviously, I)(@ > D(s--l). 
r=1 

Theorem 6, For system (1.1) without noise in the control channel (cpl. = 0, r = 
1 m) to be stabilizable it is necessary and sufficient that the sequence D@) has 
the ‘limit D, for any v > 0 , 

Proof. Necessity. If the system (1.1) with 9,. = 0 (f = 1, . . . ., m) issta- 

bilizable, then Eq. (2.1) has a unique positive definite solution D, > 0. Clearly, in 

this case all D(s) 4 D, and the limit lim~-roo D(S) < D, exists. Since this limit also 

satisfies (2. l), it must therefore be equal to D,. 
The sufficiency follows at once from the fact that if the limit lims_,ooIJ)(~f exists, it 

represents a positive definite solution of Eq. (2.1). 

We note that the process of finding matrix D@) > 0 from (4.2) is equivalent to sol- 
ving the problem of analytic construction of regulators for the determinate system (2.2). 
Therefore, since a program for analytic construction of regulators is available, the recur- 

rent method (4.2) becomes easy to use. 

let us now assume that the system (1.1) with rpt = 0 (r = 1, . . ., m) is stabilizable. 
Then for any v > 0 we can use the method (4.2) to obtain the solution D, > 0 of 

Eq. (2.1). Having found the limit .13, = fimVloD.,, we can use Theorem 4 to settle 

the problem of stabilizability of (1.1) depending on whether the inequality cp (Do) ( 1 

does or does not hold. 
Assuming that the system (1.1) is stabilizable, we finally turn our attention to the ques- 

tion of solving the problem of optimal stabilization of (1. l), (1.2). The solution of this 
problem can be found according to Theorem 1, if a solution Dp,A of Eq. (2.1) can be 
found such that 

1 - 9, (&ix) = !r (4.3) 
Let us introduce function 

It can be proved that the function f (cl) has a unique root in the interval (0, 1) , decrea- 
ses monotonously and is convex. Therefore the root of (4.3) can be found approximately 
using e. g. the method of secants or the Newton’s method. 
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Let p”denote the approximate value of the root of (4.3). Then the matrix Dpp, will 
enable us to construct an approximate optimal solution. 

6, Example. Consider the system 

Xl’ = 0.1 El’ Xl + (1 + 0.2 Ea.1 4 

21 - = (-1 + 0.2 El-1 Xl + (1 + vl’) u 
(5. I) 

The corresponding determinate system 

Xl 
*- 
- +I 4 

-- - -_s+ u 

is fully controllable, therefore for any G > 0, Y > 0 Eq. (2.1) has a unique solution 

D > 0. 
We note that the equation 

A*D+DA -Dbb+D=-C 

where G is an arbitrary positive definite matrix,can easily be solved in the present case. 

Let us write the formulas for the elements of the matrix D d,, = -1 + VI -I- cll’ 

4, = J% + 2&v d,, = -crs + (i + dr2) 42. Using these formulas we can easily 
carry out the iterative process (4.2) find D, for any Y > 0, and then obtain D,. 

In the present case, the elements of the matrix DO are, with the accuracy of up to 

0.5.10-5 , as follows: dllo = 0.09129, d18” = 0.00232, he0 = 0.09108. 

In accordance with Theorem 4, we obtain the condition of stabilizability of the system 

(5,l) in the form cp (Do) = ‘pa.&’ < 1 or 1 up I < i/Jfd,,O z 3.314. 
Following now Sect. 4, we find the optimal control in the problem of minimizing the 

functional 
I(u) = M r (zre + zs2 + u2) dt (5.2) 

0 

using the system (5.1) with ‘p = 2. We find that the optimal control u0 (x) in the prob- 

lem (5. l), (5.2) and the optimal value of the functional are as follows : 

u,, (z) = -0.01572 x1 -0.24531x2, x* MX = 13.280~~s + 1.676~,q + 13.075~~. 
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